欢迎您阅读、引用和转发!
当前位置:首页 > 第3期 > 高铝粉煤灰碱石灰低钙烧结熟料的浸出

高铝粉煤灰碱石灰低钙烧结熟料的浸出

郑 欢1,2,冯晓兰3,赵 博3,杨 岗3,杨鹏程1,刘宇春2,张锦飞2

(1.陕西煤业化工技术研究院有限责任公司,陕西 西安 710055;2.西安高新区环境保护局,陕西 西安 710055;3.西安建筑科技大学,陕西 西安 710055)

摘 要:以高铝粉煤灰碱石灰低钙干法烧结法得到的熟料为原料开展浸出工艺研究,考察了浸出温度、浸出时间、液固比以及碱液浓度等对熟料中铝酸钠浸出率的影响,探索氧化铝熟料中铝酸钠的浸出试验最佳工艺参数,通过XRD、SEM对浸出前后的氧化铝熟料进行物相表征,探讨氧化铝熟料中NaAlO2浸出的动力学。结果表明:在浸出温度65 ℃、浸出时间7 min、液固比5,碱液浓度0的条件下,铝酸钠的浸出率可以达到94%以上,相较于传统的铝土矿标准浸出中规定的温度(85±1)℃条件下浸出15 min,氧化铝熟料中铝酸钠的浸出时间短、低碱耗、氧化铝浸出率高、浸出工艺简单。利用缩核模型对氧化铝熟料铝酸钠(NaAlO2)的浸出过程进行动力学分析,其表观活化能为26.585 kJ/mol,反应符合混合控制,浸出反应活化能较低。为粉煤灰碱石灰悬浮态预热预分解-低钙干法烧结工业实践提供基本参数,新工艺在一定程度上减少碱的消耗,缩短浸出时间,提高铝的浸出效率,推进高铝粉煤灰提取氧化铝工业化进程。

关键词:氧化铝熟料;低钙烧结;浸取;动力学

0 引 言

我国煤炭资源丰富,是煤炭及发电行业大国,粉煤灰产量庞大,2017年产生量为6.86亿t,综合利用率为75.35%。依照灰色模型估计,2024年将达到9.25亿t[1]。我国粉煤灰不仅产量大,且利用不均衡,东南部等发达地区利用率高,但中西部地区产量大利用率却很低,不超过15%。粉煤灰已成为中国排放量最大的工业固体废物,对大气、河流、土壤等均造成威胁。同时,随着我国氧化铝工业的发展,铝土矿资源缺口极大[2-3]。而山西北部和内蒙古中西部地区的煤炭资源中因富含大量勃姆石、高岭石等铝硅矿物,故此类原煤燃烧后的粉煤灰中氧化铝含量与氧化铝在大多中低品位铝土矿中的含量相当,高达40%以上[4-5]。因此,高铝粉煤灰提取氧化铝研究对增加有效供给、保障氧化铝工业可持续发展具有深远意义。

当前,国内外以粉煤灰为原料提取氧化铝的工艺方法主要包括碱法、酸法及酸碱联合法[6]。碱法粉煤灰提取氧化铝工艺方法简单、技术成熟,杂质干扰小,氧化铝纯度好、溶出率高,但缺点是受限于铝硅比(≥3),且能耗大,产生大量的尾渣[7]。酸法粉煤灰提取氧化铝工艺流程短、能耗低,主要成分SiO2不进入酸液,酸可以循环使用,还可以提取镓、锂、硅等有价元素,但粉煤灰中的氧化钙和氧化铁协同溶出影响产品纯度,且盐酸、硫酸有较强的腐蚀性,对设备要求高等原因限制持续工业化生产[8]。酸碱联合法工艺通常能制得纯度较高的氧化铝,浸出率高,且可以联产硅、铝2种产品,即SiO2利用率高,同时工艺流程能耗低,在指标上具有一定优势;但酸碱混合法生产过程中面临强酸、纯碱/苛性碱消耗量过大,且AlCl3溶液中Fe、Ti等杂质难以去除等问题[9-10]。翟玉春等[11]以粉煤灰为原料制备高纯氧化铝,将获得的硫酸铝铵经3次重结晶后,制得的氧化铝纯度大于99.9%;蒋周青等[12]采用预脱硅-低钙碱石灰烧结法提取氧化铝,在1 050 ℃下煅烧120 min,氧化铝的浸出率为93.4%;李会泉等[13]提出了预脱硅-两步碱水热法提取氧化铝工艺,将两步反应耦合,氧化铝的总提取率达94.9%,提取液中氧化铝的浓度为78.8 g/L,苛性比从一步碱水热法的11.5降低到7.2。陈延信等[14]自主研发出高铝粉煤灰碱石灰低钙烧结提取氧化铝,在烧结温度1 150 ℃左右、烧结时间60 min下,粉煤灰熟料中氧化铝的浸出率达到96%。相对于饱和配方,低钙配方增加了碱消耗量、减少了石灰石消耗量,但碱又可通过后续脱碱工序回收,总体上可降低资源消耗。然而,氧化铝熟料是研究铝酸钠浸出的原料,是高铝粉煤灰烧结法生产氧化铝的中间产物,熟料铝酸钠的浸出研究是高铝粉煤灰提取氧化铝工艺流程中的重要环节,但目前大多使用铝土矿的标准浸出工艺。铝土矿和氧化铝熟料在矿物组成等方面有很大差异,沿用传统铝土矿的浸出工艺条件易导致氧化铝熟料浸出率低,消耗大量的浸取剂,操作过程复杂。基于上述问题,为进一步探索熟料浸出工艺,本文在标准浸出条件基础上,以粉煤灰碱石灰悬浮态预热预分解-低钙干法烧结的熟料开展浸出工艺的研究,考察浸出温度、浸出时间、液固比和碱液浓度对NaAlO2浸出率的影响,得到熟料浸出的最佳工艺条件,通过XRD、SEM对浸出前后的氧化铝熟料进行物相表征。此外,采用液固相反应缩核模型分析浸出动力学规律,为粉煤灰碱石灰悬浮态预热预分解-低钙干法烧结工业实践提供基本参数。

1 试 验

1.1 氧化铝熟料

试验原料为粉煤灰碱石灰悬浮态预热预分解-低钙干法烧结半工业化试验的氧化铝熟料[15],其中烧结试验的原料配方为:钙比CaO/(SiO2 TiO2)=1、碱比(Na2O K2O)/(Al2O3 Fe2O3 SiO2)=1,烧结温度1 150 ℃。采用德国布鲁克公司的S4-Pioneer型X-ray荧光光谱仪(XRF)分析氧化铝熟料中主要元素和含量,结果见表1。采用日本理学(RIGAKU)的X-ray衍射仪(D/MAX220)分析氧化铝熟料的XRD图谱,如图1所示。

表1 原料的化学成分

Table 1 Chemical composition of raw samples

 

图1 原料XRD分析图谱
Fig.1 XRD analysis image ofraw samples

由图1可以看出,该熟料的主要化学成分是Al2O3、SiO2、Na2O和CaO,主要矿物相为偏铝酸钠NaAlO2和钠钙硅NaCaSiO4。偏铝酸钠是生产氧化铝的前驱体,对熟料进行水溶或碱浸,使偏铝酸钠溶解形成偏铝酸钠溶液,而钠钙硅不溶于水或碱液,以固体形态残存,通过过滤即可实现铝硅矿物相的分离。

1.2 试验方法

配制不同浓度的浸出碱液,按试验设定的液固比,将盛有熟料与浸出碱液的容器置于一定温度的水浴锅中反应一定时间,反应结束后将滤渣过滤洗涤。滤渣充分洗涤放入(105±5)℃烘箱中干燥2 h,获得浸出后的产物样品钠钙硅(浸出渣),分析其化学组成。铝酸钠浸出率ηNAO计算公式为

 

(1)

式中,(A/C)clinker为熟料中Al2O3及CaO质量比;(A/C)slag为钠钙硅渣中Al2O3及CaO质量比。

氧化铝含量采用EDTA法测定,氧化钠含量采用火焰光度法测定。

2 结果与讨论

2.1 熟料铝酸钠浸出率的影响因素

固定条件:浸出温度约85 ℃,浸出时间15 min,液固比15 mL/g,混碱溶液浓度为15 g/L(Na2Ok=15 g/L、Na2OC=5 g/L),改变单一因素,考察其对钠钙硅渣中Al2O3含量以及NaAlO2浸出率的影响。

2.1.1 浸出温度对铝酸钠浸出率的影响

温度升高可以加快化学反应速率,更有利于达到化学反应的平衡点。但从工业生产角度考虑,温度高意味着能耗高,增加了企业运营成本。因此流程中要在满足浸出工艺要求的基础上,尽量降低浸出温度。

浸出温度对NaAlO2浸出率的影响如图2所示。可知浸出温度<65 ℃时,随浸出温度升高,钠钙硅渣中Al2O3含量逐渐降低,NaAlO2浸出率增加;浸出温度达到65 ℃时,钠钙硅渣中Al2O3含量为1.96%,NaAlO2浸出率为94.73%;但温度持续升高,钠钙硅渣中Al2O3含量和NaAlO2的浸出率基本趋于稳定。分析原因认为:氧化铝熟料中可溶性NaAlO2的溶解主要受扩散控制[16],溶解度随温度升高而增大;其次,随浸出温度升高,溶液黏度减小,熟料中可溶性NaAlO2向溶液扩散的阻力不断降低,有利于提高溶解速度;浸出温度继续增加,NaAlO2浸出率基本不变。试验中较适宜的浸出温度为65 ℃。

图2 钠钙硅渣中Al2O3含量及NaAlO2浸出率随浸出温度变化
Fig.2 Change of leaching rate of NaAlO2 and Al2O3 content
in sodium-calcium-silicon slag with leaching temperature

2.1.2 浸出时间对NaAlO2浸出率的影响

延长反应时间通常可以使化学反应更彻底、更充分,但延长反应时间则会导致设备产能下降,影响工业化生产效率。

浸出时间对NaAlO2浸出率的影响如图3所示。可知氧化铝熟料中NaAlO2浸出率随浸出时间的延长而增加。浸出时间为1~7 min时,NaAlO2浸出率由91.71%增加为94.49%,继续延长浸出时间,浸出率基本保持不变。说明在一定浸出温度下,随着时间延长,浸出率逐步升高,但反应进行到一定时间后,熟料中可溶性NaAlO2已浸出完全。试验较适宜的浸出时间为7 min。

图3 钠钙硅渣中Al2O3含量及NaAlO2浸出率随浸出时间变化
Fig.3 Change of leaching rate of NaAlO2 and Al2O3 content
in sodium-calcium-silicon slag with leaching time

2.1.3 液固比对NaAlO2浸出率的影响

液固比是浸出体系中液体体积与固体质量之间的比值,表征单位体积液体量处理固体的质量,液固比大小与物料流量相关,对工业生产有一定指导意义。

液固比对NaAlO2浸出率的影响如图4所示。可知氧化铝熟料中NaAlO2浸出率随液固比的增大而增大。液固比为3~5时,NaAlO2浸出率由92.89% 增加为93.78%,继续增大液固比,浸出率基本不再变化,达到反应平衡。分析原因认为:碱液体积一定时,液固比过小,体系中氧化铝熟料浓度大,体系黏度变大,液固界面间的传质速率会大大降低,不利于浸出反应;液固比过大,反应物料浓度过低,使浸出液中NaAlO2浓度降低,不利于后续结晶分离[17-18]。在氧化铝工业生产中,希望在保证NaAlO2较高浸出率的前提下,提高浸出液中NaAlO2浓度,以减少物料流量。试验较适宜的液固比为5。

图4 钠钙硅渣中Al2O3含量及NaAlO2浸出率随液固比变化
Fig.4 Change of leaching rate of NaAlO2 and Al2O3 content
in sodium-calcium-silicon slag with liquid-solid ratio

2.1.4 碱液浓度对NaAlO2浸出率的影响

采用拜耳工艺生产Al2O3铝土矿需在高温高压条件下,Al2O3·nH2O和碱反应得到NaAlO2溶液,硅和铁杂质进入固体残渣形成赤泥。碱液浓度决定了铝土矿中Al2O3浸出速率,也影响反应进程。因此需要进一步探索减浓度对浸出工艺的影响。

碱液浓度对NaAlO2浸出率的影响如图5所示。可知氧化铝熟料中NaAlO2浸出率随碱液浓度的增大没有明显变化。碱液浓度为0时,即直接用去离子水溶解氧化铝熟料,NaAlO2浸出率为94.82%;之后随碱液浓度增加,钠钙硅渣中Al2O3含量及NaAlO2浸出率基本趋于稳定。说明原料碱含量较高(31.51%),自身具有浸出NaAlO2的能力,所以碱浓度高低不影响氧化铝熟料中Al2O3浸出的速率及最终进程,试验较适宜的碱液浓度为0。

图5 钠钙硅渣中Al2O3的含量以及NaAlO2
浸出率随碱液浓度变化
Fig.5 Change of leaching rate of NaAlO2 and Al2O3 content
in sodium-calcium-silicon slag with alkali concentration

2.2 浸出动力学

浸出动力学模型综合反映了多相反应的浸出机理,其中具有明显界面的收缩核模型(简称缩核模型)广泛用于描述固体颗粒的溶解、浸取等。对于规则性的球心实心颗粒,该模型的计算值与实际结果较相似,本试验选择收缩模型进行动力学分析[19]。浸出液湿润氧化铝熟料表面,铝酸钠(NaAlO2)易溶解形成NaAl(OH)4的扩散层,从扩散层扩散出来,而OH-则从溶液中扩散到固相接触面上,使铝酸钠继续浸出。将氧化铝熟料在不同温度下的NaAlO2浸出率X代入式(3)拟合,拟合结果如图6所示。

1-(1-X)2/3=kt

(2)

ln k=ln A-Ea/(RT),

(3)

式中,k为速率常数;t为时间,min;A为指前因子;R为气体常数,8.314 J/(mol·K);Ea为活化能,kJ/mol。

图6 不同浸出温度条件下缩核模型动力学拟合曲线
Fig.6 Fitting curves of shrinking core model kinetics
with the different leaching time

由图6可知,模型的线性相关系数R2都大于0.927,拟合结果与缩核模型吻合较好,表明在此条件下氧化铝熟料中NaAlO2浸出反应符合缩核模型。由图6可得不同温度下的表观速率常数k代入式(3)进行一次回归,结果如图7所示。可知二者呈较好的线性关系,Ea=26.585 kJ/mol,表明该氧化铝熟料的浸出反应为混合控制,一般在低温属于化学反应控制,随温度升高转变为扩散控制。

图7 氧化铝熟料中NaAlO2浸出的ln k与1 000/T的关系
Fig.7 Relationship between 1 000/T and ln k of NaAlO2
leaching from alumina clinker

2.3 物料表征

在浸出温度65 ℃、浸出时间7 min、液固比5 mL/g的条件下,利用去离子水将氧化铝熟料内的NaAlO2浸出后可得到钠钙硅渣。

将钠钙硅渣放入烘箱中干燥2 h,冷却后用研钵研磨至<80 μm,并进行X-ray荧光分析和SEM显微形貌分析。最佳条件下浸出产物钠钙硅渣的XRD图谱如图8所示。可知主要存在Na2CaSiO4衍射峰,与原料比较,Na2CaSiO4的衍射峰相对强度明显增强,几乎观察不到NaAlO2的衍射峰,熟料中NaAlO2溶解进入溶液与钠钙硅渣分离,达到了铝硅分离的目的。进一步说明氧化铝熟料在优化条件下反应活化能低,有利于NaAlO2浸出反应进行。

图8 钠钙硅渣的XRD图
Fig.8 XRD analysis image of sodium-calcium-silicon slag

原料和浸出产物钠钙硅渣样品的SEM-EDS分析如图9所示。由图9(a)可知,原料中包括2种不同类型的颗粒,20~30 μm块状颗粒和2~5 μm细小颗粒散乱分布在块状颗粒周围;块状颗粒为Na2CaSiO4,细小颗粒主要成分为NaAlO2。由图9(b)可知,氧化铝熟料在铝酸钠浸出后,钠钙硅渣的微观形貌呈蜂窝状,这是由于NaAlO2浸出所致;钠钙硅中Al元素质量分数大幅下降至0.56%。钠钙硅渣在一定温度下极易水解,经过回收碱工艺可以分解得到NaOH及水化硅酸钙。回收的碱可回用于高铝粉煤灰碱石灰低钙烧结,水化硅酸钙可以作为优质的轻质墙体材料和吸附材料,具有良好的环境保护价值[20]

图9 原料和钠钙硅渣的SEM-EDS图
Fig.9 SEM-EDS analysis image of alumina clinker and sodium-calcium-silicon slag

3 结 论

1)通过对氧化铝熟料的微观表征分析发现氧化钙熟料中的矿物相主要为铝酸钠和钠钙硅,表征结果与低钙碱石灰烧结法的理论产物基本一致。其中钠钙硅的大颗粒群黏连在一起,而小颗粒则散乱分布于钠钙硅周边或黏附在表面。

2)通过研究碱石灰低钙烧结熟料浸出铝酸钠,得出最佳浸出条件为:在浸出温度65 ℃,浸出时间7 min,液固比5,碱液浓度0,此时NaAlO2浸出率可以达到94%以上,相较于传统的铝土矿标准浸出工艺中规定的(85±1)℃条件下浸出15 min的工况,氧化铝熟料中铝酸钠的浸出时间短、碱耗低、氧化铝浸出率高、浸出工艺简单。

3)利用缩核模型对氧化铝熟料铝酸钠(NaAlO2)的浸出过程进行动力学分析。结果表明,反应符合混合控制,浸出反应活化能较低。

4)对比研究氧化铝熟料浸出前后矿物相和形貌结构变化,发现氧化铝熟料中铝酸钠浸出后,铝酸钠溶解形成孔洞,呈蜂窝状。

参考文献(References):

[1] 张祥成,孟永彪.浅析中国粉煤灰的综合利用现状[J].无机盐工业,2020,52(2):1-5.

ZHANG Xiangcheng,Meng Yongbiao.Brief analysis on present situation of comprehensive utilization of fly ash in china[J].Norganic Chemicals Industry,2020,52(2):1-5.

[2] 邵龙义,陈江峰,石玉珍,等. 准格尔电厂炉前煤矿物组成及其对高铝粉煤灰形成的贡献[J]. 煤炭学报,2007,32(4):411-415.

SHAO Longyi,CHEN Jiangfeng,SHI Yuzhen,et al. Minerals in feed coal and their contribution to high-alumina fly ash in the Jungar power plant[J]. Journal of China Coal Society,2007,32(4):411-415.

[3] GONG B G,TIAN C,XIONG Z,et al. Mineral changes and trace element releases during extraction of alumina from high aluminum fly ash in Inner Mongolia,China[J].International Journal of Coal Geology,2016,166:120-136.

[4] 张玉胜,张伟.利用高铝粉煤灰提取氧化铝的应用[J].粉煤灰综合利用,2010(3):21-22.

ZHANG Yusheng,ZHANG Wei.Application of extraction of alumina from high aluminium fly ash[J].Fly Ash Comperhensive Utilization,2010(3):21-22.

[5] QI Liqiang,YUAN Yongtao.Characteristics and the behavior in elec-trostatic precipitators of high-alumina coal fly ash from the Jungar power plant,Inner Mongolia,China[J].Journal of Hazardous Materials,2011,192:222-225.

[6] 杨权成,马淑花,谢华,等高铝粉煤灰提取氧化铝的研究进展.[J].矿产综合利用,2012(3):3-7.

YANG Qucheng,MA Shuhua,XIE Hua,et.al.Research progress of extracting alumina fromhigh-aluminumfly ash[J].Multipurpose Utilization of Mineral Resources,2012(3):3-7.

[7] BAI Guanghui,TENG Wei,WANG Xianggang,et al.Alkaidesilicated coal fly ash as substitute of bauxite in lime-sode sintering process for aluminum production[J].Transactions of Nonferrous Metals Society of China,2010,20:169-175.

[8] 丁宏娅,马鸿文,王蕾,等.利用高铝粉煤灰制备氢氧化铝的实验[J].现代地质,2006,20(3):405-408.

DING Hongya,MA Hongwen,WANG Lei,et al.Preparation of aluminum hydroxide from high-alumina fly ash:An experinental study[J].Geoscience,2006,20(3):405-408.

[9] MATJIE R H,BUNT J R,VANHEERDEN J H P.Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal[J].Minerals Engineering,2005,18:299-310.

[10] 肖永丰.粉煤灰提取氧化铝方法研究[J].矿产综合利用,2020,27(4):156-162.

XIAO Yongfeng.Study on the extraction process of alumina from fly ash[J].Multipurpose Utilization of Mineral Resources,2020,27(4):156-162.

[11] 李来时,翟玉春,秦晋国,等.以粉煤灰为原料制备高纯氧化铝[J].化工学报,2006,57(9):218-219.

LI Lhilai,ZHAI Yuchun,QIN Jinguo,et al.extracting high-purity alumina from fly ash[J].CIESC Journal,2006,57(9):218-219.

[12] 蒋周青,马鸿文,杨静,等. 低钙烧结法从高铝粉煤灰脱硅产物中提取氧化铝[J]. 轻金属,2013(11):9-13.

JIANG Zhouqing,MA Hongwen,YANG Jing,et al.Extraction of alumina from high-alumina fly ash desilicated residue by low-lime sintering process[J]. Journal of Light Metals,2013(11):9-13.

[13] 李会泉,许德华,王晨晔,等.高铝粉煤灰两步碱水热法浸出氧化铝工艺研究[J].轻金属2016(12):5-10.

LI Huiquan XU Dehua,WANG Chenye,et al.Technical study of leaching alumina from high-alumina coal fly ash by pre-desilication two-step alkali hydrothermal process[J].Journal of Light Metals,2016(12):5-10.

[14] 陈延信,杨岗,赵博,等. 高铝粉煤灰碱石灰低钙烧结提取氧化铝[J]. 轻金属,2018(12):12-15.

CHEN Yanxin,YANG Gang,ZHAO Bo,et al.,Alumina extraction from high-alumina fly ash by soda lime low calcium sintering[J]. Journal of Light Metals,2018(12):12-15.

[15] 范鹤林,陈登福,徐松,等. 高钙钒比钒渣钠化焙烧熟料浸出条件研究[J]. 过程工程学报,2013,13(6):958-963.

FAN Heilin,CHEN Dengfu,XU Song,et al.Research on leaching conditions of sodium roasted vanadium slag with high Ca/Vratio[J]. The Chinese Journal of Process Engineering,2013,13(6):958-963.

[16] 李玉花,况盛阳,张亦飞,等. NaHCO3溶液浸出硼精矿中硼的工艺[J]. 过程工程学报,2018,18(4):710-715.

LI Yuhua,KUANG Shengyang,ZHANG Yifei,et al.Leaching process of boron from boron concentrate by sodium bicarbonate solution[J]. The Chinese Journal of Process Engineering,2018,18(4):710-715.

[17] 王佳东,翟玉春,申晓毅. 碱石灰烧结法从脱硅粉煤灰中提取氧化铝[J]. 轻金属,2009(6):14-16.

WANG Jiadong,ZHAI Yuchun,SHEN Xiaoyi.Extracting Al2O3 from desiliconized fly ash with alkali lime sintering process[J]. Journal of Light Metals,2009(6):14-16.

[18] WU Y S,YANG X,LI L S,et al. Kinetics of extracting alumina by leaching coal fly ash with ammonium hydrogen sulfate solution[J].Springer International Publishing,2019,73(9):2289-2295.

[19] 刘璐,魏光涛,辛宗武,等. 微波加热强化赤泥浸铁的研究[J]. 非金属矿,2019,42(6):6-10.

LIU Lu,WEI Guangtao,XIN Zongwu,et al.Study on iron leaching from red mud by microwave strengthening [J].Non-Metallic Mines,2019,42(6):6-10.

[20] 陈延信,冯晓兰,赵博,等.钠钙硅渣脱碱制备雪硅钙石及其除磷性能[J]非金属矿,2020,43(3):22-25.

CHEN Yanxin,FENG Xiaolan,ZHAO Bo,et al.Preparation of tobermorite by dealkalization of sodium calcium silica residue and its phosphorus removal property[J]. Journal of Light Metals,2020,43(3):22-25.

Leaching of high alumina fly ash sintered clinker with low lime dosage

ZHENG Huan1,2,FENG Xiaolan3,ZHAO Bo3,YANG Gang3,YANG Pengcheng1,LIU Yuchun2,ZHANG Jinfei2

(1.Shanxi Coal Chemial Industry Technology Research Institute Co.,Ltd.,Xian 710055,China;2.Xian Hi-TECH Industries DevelopmentZone Environmental Protection Bureau,Xian 710055,China;3.Xian University of Architecture and Technology,Xian 710055,China)

Abstract:In this paper,the leaching technology of high-alumina fly ash from the clinker obtained by low-calcium dry sintering of soda lime was studied. The effects of leaching time,leaching temperature,liquid-solid ratio and alkali concentration on the leaching rate of sodium aluminate in clinker were investigated. The optimum technological parameters for leaching sodium aluminate from alumina clinker were explored. The phase of clinker was characterized by XRD and SEM before and after leaching. The kinetics of NaAlO2 in leached alumina clinker was discussed. The results show that the leaching rate of sodium aluminate reaches more than 94% under the conditions of leaching time 7 min,leaching temperature about 65 ℃,liquid-solid ratio 5,and alkali concentration 0. Compared with the traditional standard leaching of bauxite at the temperature of(85±1) ℃ for 15 min,the leaching process is simple,the consumption of alkali is low,the leaching time is short and the leaching efficiency of aluminum is high. The kinetic analysis of sodium aluminate(NaAlO2) leaching process of alumina clinker was carried out by shrinking core model,and its apparent activation energy was 26.585 kJ/mol. The reaction is under mixed control and the activation energy of leaching reaction is low. This study provides basic parameters for the industrial practice of fly ash preheating and precalciner-lime suspension precalciner-low calcium dry sintering. The new process can reduce the consumption of alkali,shorten the leaching time,improve the leaching efficiency of aluminum,and promote the industrialization process of extracting alumina from high aluminum fly ash.

Key words:alumina clinker;low calcium sintering;leaching;kinetics

中图分类号:TF803.2

文献标志码:A

文章编号:1006-6772(2021)03-0275-06

收稿日期:2020-08-13;责任编辑:白娅娜

DOI:10.13226/j.issn.1006-6772.20081301

移动阅读

作者简介:郑 欢(1988—),女,河南许昌人,工程师,硕士,研究方向为固体废弃物综合利用技术。E-mail:604133258@qq.com

引用格式:郑欢,冯晓兰,赵博,等.高铝粉煤灰碱石灰低钙烧结熟料的浸出[J].洁净煤技术,2021,27(3):275-280.

ZHENG Huan,FENG Xiaolan,ZHAO Bo,et al.Leaching of high alumina fly ash sintered clinker with low lime dosage[J].Clean Coal Technology,2021,27(3):275-280.

洁净煤技术
《洁净煤技术》(双月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 888文章总数
  • 158784访问次数
  • 28篇 最新文章
  • 编辑部专区

    联系我们