欢迎您阅读、引用和转发!
当前位置:首页 > 第5期 > Fe,Co,Ni改性SAPO-34分子筛上MTO反应的理论研究

Fe,Co,Ni改性SAPO-34分子筛上MTO反应的理论研究

李对春1,邢 斌1,刘红艳2,刘 平3,王宝俊4,李瑞丰5

(1.太原理工大学 化学化工学院,山西 太原 030024;2.大同大学 化学与环境工程学院,山西 大同 037009;3.中国科学院 山西煤炭化学研究所,山西 太原 030001;4.太原理工大学 煤科学与技术教育部和山西省重点实验室,山西 太原 030024;5.太原理工大学 能源化工催化研究中心,山西 太原 030024)

:为明确分子筛对MTO反应的催化活性和产物选择性的影响,采用色散力矫正的密度泛函理论方法,以SAPO-34分子筛为催化剂,考察了3种不同金属Fe、Co和Ni改性的SAPO-34分子筛布朗斯特(Brønsted,B酸)酸强度的变化,并研究不同酸性的催化剂对甲醇制烯烃(MTO)反应中的低碳烯烃催化活性和选择性的影响及2者间的关联。通过计算去质子化能比较改性前、后SAPO-34分子筛的酸性强度变化,酸性强度顺序为FeAPO-34>CoAPO-34>SAPO-34>NiAPO-34。通过计算MTO反应克服的反应能垒,比较低碳烯烃的催化活性和选择性,Fe、Co、Ni金属改性的SAPO-34分子筛对乙烯生成反应的催化活性顺序为FeAPO-34≈NiAPO-34>CoAPO-34;对丙烯生成反应的催化活性顺序为FeAPO-34≈CoAPO-34>NiAPO-34;Ni原子的引入比Fe、Co原子的引入提高了乙烯的选择性,而Fe、Co原子的引入比Ni原子的引入提高了丙烯的选择性。

关键词:Fe,Co和Ni金属改性;SAPO-34分子筛;MTO;密度泛函理论;Brønsted 酸强度

中图分类号:TQ221.2

文献标志码:A

文章编号:1006-6772(2018)05-0103-10

收稿日期:2018-07-13;

责任编辑:张晓宁

DOI:10.13226/j.issn.1006-6772.18071302

基金项目:山西省留学回国人员科研资助项目(2016-104)

作者简介:李对春(1985—),女,山西太原人,博士研究生,从事分子筛掺杂改性及其催化性能研究。E-mail:liduichun1985@163.com。通讯作者:王宝俊(1964—),男,山西太原人,教授,博士生导师,主要从事煤结构与反应性的量子化学研究。E-mail:wangbaojun@tyut.edu.cn

引用格式:李对春,邢斌,刘红艳,等.Fe,Co,Ni改性SAPO-34分子筛上MTO反应的理论研究[J].洁净煤技术,2018,24(5):103-112.

LI Duichun,XING Bin,LIU Hongyan,et al.Theoretically study of MTO conversion on Fe,Co and Ni modified SAPO-34 zeolite[J].Clean Coal Technology,2018,24(5):103-112.

Theoretically study of MTO conversion on Fe,Co and Ni modified SAPO-34 zeolite

LI Duichun1,XING Bin1,LIU Hongyan2,LIU Ping3,WANG Baojun4,LI Ruifeng5

(1.College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,China;2.College of Chemistry and Chemical Engineering,Shanxi Datong University,Datong 037009,China;3.Institute of Coal Chemistry,Chinese Academy of Science,Taiyuan 030001,China;4.Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province,Taiyuan University of Technology,Taiyuan030024,China;5.Research Center of Energy Chemical & Catalytic Technology,Taiyuan University of Technology,Taiyuan 030024,China)

Abstract:In order to clarify the effect of molecular sieve on the catalytic activity and product selectivity of MTO reaction,density functional theory including dispersion correction (GGA-PBE-D2) has been employed to study the effect of acidic strength on the activity and selectivity of methanol-to-olefins (MTO) conversion over Fe,Co and Ni modified SAPO-34 zeolites.The relationship between acidic strength and catalytic activity of different MeAPO-34 zeolites was discussed.The deprotonation energy was calculated to measure the acidic strength of different MeAPO-34 zeolites,and the energy barrier and reaction heat of different MTO reaction steps over MeAPO-34 zeolites were calculated to compare the activity and selectivity.Results show that the acidic strength order is FeAPO-34>CoAPO-34>SAPO-34>NiAPO-34.The catalytic activity of ethylene formation is in order of FeAPO-34≈NiAPO-34>CoAPO-34,and the catalytic activity order of propene formation is FeAPO-34≈CoAPO-34>NiAPO-34.The introduced of Ni atoms into the SAPO-34 zeolite framework can enhance the selectivity towards ethylene compared with that of Fe and Co atoms,however,the introduced of Fe and Co atoms into the SAPO-34 zeolite framework has higher selectivity towards propene than that of Ni atom.

Key words:Fe,Co and Ni modification;SAPO-34 zeolite;MTO reaction;density functional theory;Brønsted acidic strength

0 引 言

低碳烯烃中乙烯、丙烯是现代化学工业的基本有机原料,随着化工产业的飞速发展,其需求量将越来越大。制取乙烯、丙烯的传统路线是通过石脑油裂解生产,但由于石油是不可再生资源,储量有限,价格起伏较大,寻求替代传统的非石油路线生产低碳烯烃势在必行[1-4]。甲醇制烯烃(methanol-to-olefins,MTO)是替代传统路线的新工艺,是环境催化领域的研究热点[2]。目前,甲醇的制备路线已成熟完善,不仅可通过生物质发酵制得,还可以通过煤、天然气经由合成气(CO+H2)制得。而MTO是该替代路线的关键环节。

目前,共提出20多种甲醇制烯烃反应机理,但至今没有得出与反应完全符合的机理[2],其中,最具代表性的为直接反应机理和间接反应机理。根据反应过程中产生的特殊中间体,直接反应机理又被分为卡宾机理[1,5]、氧鎓叶立德机理[6-7]、碳正离子机理[8]、自由基机理[9]等。Dahl等[10-12]提出了间接反应机理(烃池机理),即限域在分子筛孔道内的烃池物种与分子筛作为共催化剂,通过与甲醇发生连续的甲基化,使碳链增长,经低碳烯烃消除反应生成产物烯烃(乙烯和丙烯),同时,烃池物种和分子筛的B酸性位点再生,完成一个催化循环,烃池机理得到了研究者们的普遍认可。以烯烃为基础的循环起源于30年前由Dessau[13-14]提出的烯烃甲基化和裂化路线。王传明等[15]通过密度泛函理论证明了SAPO-34分子筛上发生的MTO反应除了聚甲基苯外,烯烃本身也是主要的烃池物种,即在MTO催化反应中同时存在芳烃路线和烯烃路线。

在MTO反应中,SAPO-34分子筛表现出优异的催化性能。SAPO-34分子筛具有8元环构成的椭球形笼和三维孔道结构,这种分子筛的小孔结构、中等酸性强度及良好的水热稳定性使其具有良好的MTO催化性能[16-17]。不同的分子筛具有不同的骨架拓扑结构及酸性质,包括酸性位点的分布、酸性位点的密度及强度等,这些因素决定了其催化活性和产物的选择性。其中,分子筛催化剂酸性位点的强度是影响MTO反应催化性能的重要因素[18-20],但通过试验手段无法明确单个因素对MTO反应催化性能的影响。因此,本文采用色散力矫正的密度泛函理论方法,构建SAPO-34分子筛模型,以2,3-二甲基-2-丁烯(iso-C6)为烃池物种[21],选择不同金属杂原子Fe、Co和Ni同晶取代Al原子对SAPO-34分子筛催化剂进行改性,考察了不同金属原子Fe、Co和Ni改性的SAPO-34 分子筛中B酸位点强度的变化,并分析改性SAPO-34分子筛对MTO反应的催化活性和产物选择性的影响。

1 计算方法与模型

1.1 计算方法

采用VASP软件包的密度泛函理论方法(DFT)进行结构优化和总能量计算[22-24],电子的交换关联势采用广义梯度近似(GGA)下的PBE泛函来描述[25],用PAW方法描述离子实,价电子用平面波基组扩展[26-27],同时考虑了库伦相互作用的色散效应[28]。设定截断能为400 eV,通过CI-NEB方法寻找过渡态[29],并通过频率分析确认过渡态,在计算过程中,还考虑了零点能(ZPE)校正[30-31]。对于SAPO-34分子筛及Fe、Co和Ni改性的SAPO-34分子筛,布里渊带使用1×1×1的Monkhost-Pack筛状的k点空间取样[32]。计算过程中基于自旋极化方法考虑了Fe、Co和Ni原子的磁性,结构优化时晶胞参数保持不变,直至每个原子上的力小于0.02 eV/Angst。

1.2 计算模型

SAPO-34分子筛具有菱沸石(CHA)骨架结构单元[33],属于小孔分子筛[34]。CHA晶胞单元中含有36个T原子(1个Si原子,18个Al原子,17个P原子)和72个O原子。由于Si、P原子价态不同,需要用额外的一个质子(H+)补偿晶胞中产生的一个负电荷来保持整体结构的电中性,该位点(Si-O(H)-Al)即为Brønsted酸性中心[35]。SAPO-34的周期性结构如图1所示,优化的晶胞参数为a=b=13.85×10-10 m,c=15.08×10-10 m,与国际分子筛协会数据库中的晶胞参数(a=b=13.68×10-10 m,c=14.77×10-10 m)基本相符[36]

图1 SAPO-34的周期性结构示意
Fig.1 Periodic configuration of SAPO-34

金属杂原子Fe、Co和Ni通过同晶取代Al原子的方式进入分子筛骨架,得到MeAPO-34(Me=Fe、Co、Ni)催化剂。由于Fe原子与Al原子的价态相同,所以Fe(+3)原子替换Al(+3)原子时不会产生电荷差,而Co(+2)原子和Ni(+2)原子与Al(+3)原子的价态不同,所以替换Al原子时,同样用质子(H+)补偿晶胞中产生一个负电荷。FeAPO-34,CoAPO-34和NiAPO-34分子筛优化后的稳定结构如图2所示,计算模型中所有的原子保持弛豫。

2 结果与讨论

2.1 金属杂原子引入SAPO-34分子筛后对酸性强度的影响

分子筛催化剂的B酸位点的强度是影响MTO反应催化性能的重要因素[19-20,37]。B酸定义为任何化学物种(分子或离子)能够失去或贡献出氢离子(质子)。去质子化能是评价酸性强度的标准之一,根据B酸的定义,本文采用去质子化能EDPE(从Si-O(H)-Al位点上失去质子(H+)所需要的能)描述B酸性位点的酸性强度[38-40]。计算公式[39-40]

图2 3种金属原子Fe、Co、Ni改性的SAPO-34结构示意
Fig.2 Configuration of FeAPO-34,CoAPO-34 and NiAPO-34

MeAPO-34MeAPO-34-+H+

EDPE=EMeAPO-34-+EH+-EMeAPO-34

其中,EMeAPO-34为MeAPO-34分子筛的结构能量;EMeAPO-34-为MeAPO-34结构中失去一个质子H+后的结构能量;EH+为一个质子H+的能量。EDPE越小,对应的B酸位点越容易贡献出H+质子,B酸位点的酸性越强。EDPE的计算结果见表1,其与Jones.等[41]的计算结果一致。B酸位点周围有4个O位点,为了比较不同MeAPO-34结构中B酸的酸性强度,分别计算4个O位点的EDPE值和EDPE平均值(Eav-DPE)(表1)。

Eav-DPE=(EDPE-1+EDPE-2+EDPE-3+EDPE-4)/4

从表1可知,当3种金属杂原子Fe、Co和Ni引入SAPO-34结构,NiAPO-34结构的Eav-DPE值比未改性SAPO-34结构的Eav-DPE值大,说明NiAPO-34结构中的B酸位点的强度较弱。但FeAPO-34和CoAPO-34结构的Eav-DPE值均比未改性SAPO-34结构的Eav-DPE值小,说明FeAPO-34和CoAPO-34结构中的B酸位点的强度较强。因此,改性前后SAPO-34结构的B酸位点的酸性强度顺序为FeAPO-34>CoAPO-34>SAPO-34>NiAPO-34,表明金属杂原子引入SAPO-34结构中能改变分子筛的B酸位点的酸性强度。

表1 SAPO-34结构及MeAPO-34结构中的EDPEEav-DPE
Table 1 Calculated EDPE and Eav-DPE of SAPO-34 and MeAPO-34 structure

结构位点nEDPE/(kJ·mol-1)Eav-DPE/(kJ·mol-1)11 173.5SAPO-34-Si-OHn-Al21 166.71 168.131 158.541 173.711 037.4FeAPO-34-Si-OHn-Al21 009.01 017.431 006.341 016.911 092.4CoAPO-34-Si-OHn-Al21 082.41 073.431 039.141 079.811 191.9NiAPO-34-Si-OHn-Al21 159.81 174.031 174.841 169.6

2.2 金属杂原子引入SAPO-34分子筛后对MTO反应性能的影响

在MeAPO-34稳定结构的基础上,基于有机活性中心为iso-C6分子烯烃循环的烃池机理,即iso-C6分子与分子筛作为共催化剂,与甲醇发生连续的甲基化,使碳链增长,然后发生低碳烯烃消除反应,生成产物乙烯和丙烯,同时,烃池物种iso-C6分子和分子筛的B酸位点再生,形成一个完整的催化循环。反应路线如图3所示。

反应步骤可分为:

1)甲基化反应

(CH3)2CC(CH3)2+CH3OH+HZ

(CH3)3C+C(CH3)2+H2O+Z-

(M1)

(CH3)3C—C(CH3)(CH2)+CH3OH+HZ

(CH3)3C+—C(CH3)(CH2CH3)+H2O+Z-

(M2)

(CH3)3C—C(CH3)(CHCH3)+CH3OH+HZ

(CH3)3C+C(CH3)(CH3CHCH3)+H2O+Z-

(M3)

图3 MTO反应的烯烃循环路径
Fig.3 Reaction pathway of olefin-based for MTO conversion

2)过渡反应

(CH3)3C+C(CH3)2+H2O+Z-

(CH3)3C—C(CH3)(CH2)+H2O+HZ

(D1)

(CH3)3C+—C(CH3)(CH2CH3)+H2O+Z-

(CH3)3C—C(CH3)(CHCH3)+H2O+HZ

(D2)

(CH3)3C+C(CH3)(C2H5)+H2O+

C+(CH3)2(C2H5)+

H2O+Z-

(C1)

(CH3)3C+C(CH3)(C3H7)+H2O+

C+(CH3)2(C3H7)+H2O+Z-

(C2)

3)烯烃脱除反应

(CH3)2CC+(CH3)2(C2H5)+H2O+Z-

(CH3)2CC(CH3)2+C2H4+H2O+HZ

(E1)

(CH3)2CC+(CH3)2(C3H7)+H2O+Z-

(CH3)2CC(CH3)2+C3H6+H2O+HZ

(E2)

各个反应步骤的活化能(Ea)和反应热(ΔH)见表2。本文选择甲基化反应步骤(M1、M2、M3)和低碳烯烃(乙烯和丙烯)消除步骤(E1、E2)来评价分子筛的酸性强度对MTO反应催化性能的影响。

表2 MeAPO-34结构中不同反应步骤的活化能
(Ea)和反应热H)
Table 2 Calculated Ea and ΔH of different reaction steps over MeAPO-34 structurekJ/mol

MTO反应的第1步是甲基化反应(M1),其反应物、产物和过渡态(S1、S2、TS1)结构如图4所示。在FeAPO-34,CoAPO-34和NiAPO-34结构上发生M1反应的反应热分别为26.1、-13.5和-28.9 kJ/mol,需要克服的能垒分别为104.2、99.4和112.9 kJ/mol。在NiAPO-34结构中,M1反应放热最多,需要克服的能垒最高,说明Ni的存在不利于CH3OH的活化;但在FeAPO-34和CoAPO-34结构中,M1反应需要克服的能垒较接近,说明FeAPO-34和CoAPO-34对CH3OH活化的催化活性相近。

第2步甲基化反应(M2)的反应物、产物和过渡态(S4、S5、TS3)结构与M1反应的S1、S2、TS1结构相似,其键长见表3。在FeAPO-34、CoAPO-34和NiAPO-34结构上发生M2反应的反应热分别为-25.1、34.7和-39.6 kJ/mol,需要克服的能垒分别为98.4、100.3和148.6 kJ/mol。NiAPO-34结构仍不利于CH3OH的活化,FeAPO-34和CoAPO-34结构对CH3OH活化的催化活性相近。

乙烯消除反应步骤(E1)的反应物、产物和过渡态(S6,S7,TS5)结构如图5所示。在FeAPO-34、CoAPO-34和NiAPO-34结构上发生乙烯消除反应的反应热分别为-12.5、5.8和-54.0 kJ/mol,需要克服的能垒分别为86.8、130.3和83.0 kJ/mol。结果表明:FeAPO-34和NiAPO-34表现出较好的催化活性,而CoAPO-34的催化活性较差,与Kang等[42]通过快速水热晶化法合成的Fe、Co、Ni三种金属改性的SAPO-34分子筛上对乙烯选择性的顺序一致。

FeAPO-34、CoAPO-34和NiAPO-34的生成产物丙烯的反应路径中,甲基化反应(M3)的反应热分别为32.8、-6.8和-56.0 kJ/mol,需要克服的能垒分别为104.2、93.6和138.0 kJ/mol,与M1、M2反应的计算结果相似,即NiAPO-34结构对甲基化反应的催化活性最差,FeAPO-34和CoAPO-34结构对甲基化反应的催化活性相近。M3甲基化反应步骤中的反应物、产物和过渡态(S9,S10,TS7)结构的键长见表3。

丙烯消除反应(E2)的反应物、产物和过渡态(S11,S12,TS9)结构与E1反应中的S6,S7,TS5结构相似,其键长见表4。在FeAPO-34,CoAPO-34和NiAPO-34结构上发生丙烯消除反应的反应热分别为-9.6、-34.7和46.3 kJ/mol,需要克服的能垒分别为38.6、41.5和131.2 kJ/mol,可知,对于丙烯消除反应E2,FeAPO-34和CoAPO-34结构催化活性明显比NiAPO-34结构的催化活性好。

图4 不同MeAPO-34结构中M1的反应物(S1)、产物(S2)和过渡态(TS1)结构示意
Fig.4 Configurations of reactant (S1),product (S2) and transition state (TS1) of M1 reaction step over different MeAPO-34 structures

表3 不同MeAPO-34结构上甲基化反应M2、M3的反应物产物和过渡态结构中的键长
Table 3 Corresponding bond length of reactant,product and transition state of M2,M3 reaction steps over different MeAPO-34 structures

反应步骤MeAPO-34结构结构键长/10-10 mC1—C2C2—O1H1—O1H1—O2FeAPO-343.361.451.431.06CoAPO-34反应物(S4)3.401.461.271.17NiAPO-343.621.451.601.03FeAPO-342.242.041.021.40M2CoAPO-34过渡态(TS3)2.251.991.011.76NiAPO-342.251.991.011.76FeAPO-341.463.101.041.62CoAPO-34产物(S5)1.583.970.981.97NiAPO-341.583.970.981.97FeAPO-343.531.461.421.08CoAPO-34反应物(S9)3.781.451.341.12NiAPO-343.261.462.241.04FeAPO-342.322.041.021.61M3CoAPO-34过渡态(TS7)2.351.991.011.71NiAPO-342.192.191.011.45FeAPO-341.604.010.983.00CoAPO-34产物(S10)1.623.200.991.88NiAPO-341.594.371.002.09

注:C1为有机分子的C原子;C2为CH3OH分子中的C原子;O1为CH3OH分子中的O原子;H1为分子筛骨架上B酸位点的H原子;O2为分子筛骨架上B酸位点的O原子。

表4 不同MeAPO-34结构上丙烯消除反应E2的反应物产物和过渡态结构中的键长
Table 4 Corresponding bond length of reactant,product and transition state of E2 reaction steps over different MeAPO-34 structures

MeAPO-34结构结构键长/10-10 mC1—C2'C3—H1'H1'—O1'H2—O1'H2—O2FeAPO-341.581.102.770.991.87CoAPO-34反应物(S11)1.571.102.510.982.04NiAPO-341.561.102.520.992.25FeAPO-342.891.291.381.051.52CoAPO-34过渡态(TS9)3.211.341.341.011.73NiAPO-342.901.261.431.012.06FeAPO-343.233.020.981.551.03CoAPO-34产物(S12)3.251.951.011.261.18NiAPO-343.591.951.011.261.18

注:C2′为丙烯分子中的C原子;C3为丙烯分子中的C原子;H1′为丙烯分子中的H原子;O1′为H2O分子中的O原子;H2为H2O分子中的H原子。

图5 不同MeAPO-34结构中乙烯消除反应E1的反应物(S6)、产物(S7)和过渡态(TS5)结构示意
Fig.5 Configurations of reactant (S6),product (S7) and transition state (TS5) of E1 reaction step over different MeAPO-34 structures

由表4可知,在3种不同的MeAPO-34结构中,FeAPO-34和CoAPO-34上丙烯消除反应E2需要克服的反应能垒比乙烯消除反应E1要低,而NiAPO-34上丙烯消除反应E2需要克服的反应能垒比乙烯消除反应E1高,说明在本文的烯烃循环反应路径中,FeAPO-34和CoAPO-34分子筛对丙烯的选择性好,NiAPO-34分子筛对乙烯的选择性好。

3 结 论

1)通过比较不同MeAPO-34结构中Si-O(H)-Al酸性位点的去质子化能可知,MeAPO-34分子筛的B酸位的酸性强度顺序为FeAPO-34>CoAPO-34>SAPO-34>NiAPO-34,不同金属杂原子的引入对SAPO-34分子筛B酸位点的酸性强度起调节作用。

2)以iso-C6分子为烃池物种,研究烯烃循环反应路径对MTO反应中的甲基化反应步骤(M1、M2、M3)和烯烃消除反应(E1、E2)的催化活性,结果表明,Fe、Co和Ni改性的SAPO-34分子筛、 M1、M2、M3反应的催化活性顺序为FeAPO-34≈CoAPO-34>NiAPO-34;对乙烯生成反应(E1)的催化活性顺序为FeAPO-34≈NiAPO-34>CoAPO-34;对丙烯生成反应(E2)的催化活性顺序为FeAPO-34≈CoAPO-34>NiAPO-34。

3)NiAPO-34结构中B酸位的酸性强度比FeAPO-34和CoAPO-34结构中的弱,表明强酸性位点对甲基化反应(M1、M2、M3)和丙烯消除反应E2的催化活性好,而弱酸性位点对乙烯消除反应E1的催化活性好。

4)对于烯烃循环反应路径而言,FeAPO-34和CoAPO-34分子筛对丙烯的选择性好,NiAPO-34分子筛对乙烯的选择性好,即强酸位点有利于丙烯产物的生成,而弱酸位点有利于乙烯产物的生成。计算结果为MTO催化反应中的分子筛催化剂改性提供理论依据,从而制备出产物选择性和催化活性更好的分子筛催化剂。

参考文献(References):

[1] CHANG C D,SILVESTRI A J.The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J].Journal of Catalysis,1977,47(2):249-259.

[2] STÖCKER M.Methanol-to-hydrocarbons:Catalytic materials and their behavior[J].Microporous and Mesoporous Materials,1999,29(1):30-48.

[3] CHANG C.Methanol conversion to light olefins[J].Catalysis Reviews,1984,26(3/4):323-345.

[4] ZHU Qingjun,KONDO Junko N,OHNUMA Ryosuke,et al.The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites[J].Microporous and Mesoporous Materials,2008,112(1):153-161.

[5] CHANG C.Hydrocarbons from methanol[J].Catalysis Reviews,1983,25(1):1-118.

[6] HUTCHINGS G J,GOTTSCHALK F,HALL M V M,et al.Hydrocarbon formation from methylating agents over the zeolite catalyst ZSM-5:Comments on the mechanism of carbon-carbon bond and methane formation[J].Journal of the Chemical Society,Faraday Transactions 1:Physical Chemistry in Condensed Phases,1987,83(3):571-583.

[7] OLAH G A.Higher coordinate(hypercarbon containing) carbocations and their role in electrophilic reactions of hydrocarbons[J].Pure & Applied Chemistry,1981,53(1):201-207.

[8] KAGI D.Mechanism of conversion of methanol over ZSM-5 catalyst[J].Journal of Catalysis,1981,69(1):242-243.

[9] CLARKE J K A,DARCY R,HEGARTY B F,et al.Free radicals in dimethyl ether on H-ZSM-5 zeolite:A novel dimension of heterogeneous catalysis[J].Journal of the Chemical Society Chemical Communications,1986,5(5):425-426.

[10] DAHL I M,KOLBOE S.On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J].Catalysis Letters,1993,20(3/4):329-336.

[11] DAHL I M,KOLBOE S.On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34.I:Isotopic labeling studies of the co-reaction of ethene and methanol[J].Journal of Catalysis,1994,149(2):458-464.

[12] DAHL Ivar M,KOLBOE Stein.On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34.2:Isotopic labeling studies of the co-reaction of propene and methanol[J].Journal of Catalysis,1996,161(1):304-309.

[13] DESSAU R M.On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins[J].Journal of Catalysis,1986,99(1):111-116.

[14] DESSAU R M,LAPIERRE R B.On the mechanism of methanol conversion to hydrocarbons over HZSM-5[J].Journal of Catalysis,1982,78(1):136-141.

[15] WANG Chuanming,WANG Yangdong,XIE Zaiku.Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles:Are olefins themselves the dominating hydrocarbon pool species?[J].Journal of Catalysis,2013,301:8-19.

[16] LIANG Juan,LI Hongyuan,ZHAO Sugin,et al.Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion[J].Applied Catalysis,1990,64:31-40.

[17] XU Yan,MADDOX P J,Couves J W.The synthesis of SAPO-34 and CoSAPO-34 from a triethylamine-hydrofluoric acid-water system[J].Journal of the Chemical Society Faraday Transactions,1990,86(2):425-429.

[18] CHU Yueying,HAN Bing,ZHENG Anmin,et al.Influence of acid strength and confinement effect on the ethylene dimerization reaction over solid acid catalysts:A theoretical calculation study[J].Journal of Physical Chemistry C,2012,116(23):402-406.

[19] WESTGÅRD E M,DE W K,HEMELSOET K,et al.How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol[J].Journal of Catalysis,2015,328:186-196.

[20] ERICHSEN M W,SVELLE S,OLSBYE U.The influence of catalyst acid strength on the methanol to hydrocarbons(MTH) reaction[J].Catalysis Today,2013,215(41):216-223.

[21] WANG Chuanming,WANG Yangdong,DU Yujue,et al.Similarities and differences between aromatic-based and olefin-based cycles in H-SAPO-34 and H-SSZ-13 for methanol-to-olefins conversion:Insights from energetic span model[J].Catalysis Science & Technology,2015,5(9):4354-4364.

[22] KRESSE G,FURTHMÜLLER J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996,6(1):15-50.

[23] KRESSE G,FURTHMÜLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B,1996,54(16):11169-11186.

[24] MORIKAWA Y,IWATA K,TERAKURA K.Theoretical study of hydrogenation process of formate on clean and Zn deposited Cu(111) surfaces[J].Applied Surface Science,2001,169(3):11-15.

[25] PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.

[26] BLÖCHL P E.Projector augmented-wave method[J].Physical Review B,1994,50(24):17953-17979.

[27] KRESSE G,JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review B,1999,59(3):1758-1775.

[28] GRIMME S,ANTONY J,EHRLICH S,et al.A consistent and accurate ab initio parametrization of density functional dispersion correction(DFT-D) for the 94 elements H-Pu[J].The Journal of chemical physics,2010,132(15):154-164.

[29] HENKELMAN G,UBERUAGA B P,JNSSON H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J].The Journal of chemical physics,2000,113(22):9901-9904.

[30] KANG Lihua,ZHANG Tao,LIU Zhongmin,et al.Methanol adsorption in isomorphously substituted AlPO-34 clusters and periodic density functional theory calculations[J].The Journal of Physical Chemistry C,2008,112(14):5526-5532.

[31] CHU Yueying,HAN Bing,FANG Hanjun,et al.Influence of acid strength on the reactivity of alkane activation on solid acid catalysts:A theoretical calculation study[J].Microporous and Mesoporous Materials,2012,151:241-249.

[32] MONKHORST H J,PACK J D.Special points for Brillouin-zone integrations[J].Physical Review B,1976,13(12):5188-5192.

[33] LOK B M,MESSINA C A,PATTON R L,et al.Silicoaluminophosphate molecular sieves:Another new class of microporous crystalline inorganic solids[J].Journal of the American Chemical Society,1984,106(20):6092-6093.

[34] SONG Weiguo,HAW James F.Improved methanol-to-olefin catalyst with nanocages functionalized through ship-in-a-bottle synthesis from PH3[J].Angewandte Chemie International Edition,2003,42(8):892-894.

[35] WANG Chuanming,WANG Yangdong,LIU Hongxing,et al.A first-principle study of the methanol-to-olefins reaction catalyzed by methylnaphthalene in SAPO-34 zeolite[J].Acta Chimica Sinica,2010,68(22):2312-2318.

[36] BAERLOCHER C,MCCUSKER L B.Database of zeolite structures[EB/OL].(2017-12-11)[2018-07-13].http://www.iza-structure.org/databases.

[37] CHU Yueying,HAN Bing,ZHENG Anmin,et al.Influence of acid strength and confinement effect on the ethylene dimerization reaction over solid acid catalysts:A theoretical calculation study[J].Journal of Physical Chemistry C,2012,116(23):12687-12695.

[38] ZHANG Hailu,ZHENG Anmin,DENG Zongwu.The effect of zirconium incorporation on the brönsted acidity of zeolite:A DFT study[J].Applied Mechanics and Materials,2010,44-47:3616-3619.

[39] PETKOV P S,ALEKSANDROV H A,VALTCHEV V,et al.Framework stability of heteroatom-substituted forms of extra-large-pore ge-silicate molecular sieves:The case of ITQ-44[J].Chemistry of Materials,2012,24(13):2509-2518.

[40] GAMBA A,TABACCHI G,FOIS E.TS-1 from first principles[J].The Journal of Physical Chemistry A,2009,113(52):15006-15015.

[41] JONES A J,IGLESIA E.The strength of brønsted acid sites in microporous aluminosilicates[J].ACS Catalysis,2015,5(10):5741-5755.

[42] KANG M.Methanol conversion on metal-incorporated SAPO-34s(MeAPSO-34s)[J].Journal of Molecular Catalysis A:Chemical,2000,160(2):437-444.

洁净煤技术
《洁净煤技术》(双月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 888文章总数
  • 158784访问次数
  • 28篇 最新文章
  • 编辑部专区

    联系我们