欢迎您阅读、引用和转发!
当前位置:首页 > 第5期 > 化学链燃烧工艺中载氧体的研究进展

化学链燃烧工艺中载氧体的研究进展

刘海涛1,高海潮1,高志芳1,2

(1.安徽工业大学 冶金工程学院,安徽 马鞍山 243002;2.安徽工业大学 冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002)

:化石燃料燃烧产生的CO2是主要的温室气体之一,化学链燃烧工艺不仅能够低能量消耗进行内分离捕集CO2,也是制备H2及其他工业合成气的重要手段,其中载氧体是整个化学链循环系统的关键。以化学链燃烧中的载氧体物化特性为核心,论述了载氧体的制备、组成以及掺杂优化等发展现状,分析了当前载氧体存在的问题及研究难点,并对载氧体研究方向进行展望。载氧体传统制备方法中机械混合法、浸渍法操作简单、成本低,但制备的载氧体样品均匀性差,活性和稳定性难以保证;化学共沉淀、冷冻成粒法和溶胶凝胶法能在一定程度上提高载氧体各成分的均匀性,但其载氧体的微观结构难以控制,操作复杂,制备成本较高,不适于大规模应用;载氧体制备方法应向低成本、高效以及精细化控制方向发展。目前常用的载氧体中铁基载氧体活性低,镍基和锰基载氧体对环境不利,而铜基载氧体易于烧结,惰性载体的加入和碱金属等元素的掺杂能在一定程度上改善其特性,但距离低成本、高活性、环境友好、工作寿命长还有一定差距,因而进一步研究载氧体组分和掺杂组分之间的协同机理是载氧体优化的关键。

关键词:温室效应;化学链燃烧;载氧体;掺杂改性

中图分类号:TK16

文献标志码:A

文章编号:1006-6772(2018)05-0012-08

收稿日期:2018-03-27;

责任编辑:白娅娜

DOI:10.13226/j.issn.1006-6772.18032701

基金项目:国家自然科学基金资助项目(U1660106)

作者简介:刘海涛(1992—),男,安徽阜阳人,硕士研究生,从事固体废弃物综合利用及燃烧节能减排研究。E-mail:804571143@qq.com。通讯作者:高志芳(1978—),女,河北沧州人,副教授,博士。E-mail:cancan20071007@163.com

引用格式:刘海涛,高海潮,高志芳.化学链燃烧工艺中载氧体的研究进展[J].洁净煤技术,2018,24(5):12-19.

LIU Haitao,GAO Haichao,GAO Zhifang.Progress on oxygen carrier in chemical-looping combustion[J].Clean Coal Technology,2018,24(5):12-19.

Progress on oxygen carrier in chemical-looping combustion

LIU Haitao1,GAO Haichao1,GAO Zhifang1,2

(1.School of Metallurgical Engineering,Anhui University of Technology,Maanshan 243002,China;2.Key Laboratory of Metallurgical Emission Reduction and Comprehensive Utilization of Resources,Anhui University of Technology,Maanshan 243002,China)

Abstract:CO2 produced by the combustion of fossil fuels is one of the major greenhouse gases.Chemical-looping combustion process can not only separate and capture CO2 with low energy consumption,but also is an important means for the preparation of hydrogen and other industrial synthesis gases.The oxygen carrier is the key to the entire chemical-looping combustion system.The development status of preparation,composition and doping modification of oxygen carrier were discuessed,and current problems,research difficulties and prospects of oxygen carrier were analyzed.In the traditional preparation method of oxygen carrier,the mechanical mixing and impregnation methods are simple in operation process and low in cost,but the prepared oxygen carrier sample has poor uniformity,and it is difficult to ensure the activity and stability.Chemical co-precipitation,freezing granulation method and sol-gel method can improve the uniformity of the components of the oxygen carrier to some extent,but it is not suitable for large-scale application because of unmanageable microstructure,complex operation and high preparation cost.The preparation method of the oxygen carrier should be low-cost,high-efficiency and refined control.At present,the iron-based oxygen carrier in the commonly used oxygen carrier has low activity,the nickel-based and manganese-based oxygen carrier is unfavorable to the environment,and the copper-based oxygen carrier is easy to be sintered.It can improve the characteristics to a certain extent by addition of the inert carrier and the alkali metal,but there is still a gap between low cost,high activity,environmental friendliness and long working life.Therefore,further research on the synergistic mechanism between oxygen carrier components and doping components is the key to oxygen carrier optimization.

Key words:greenhouse effect;chemical-looping combustion;oxygen carriers;doping modification

0 引 言

近年来,温室效应的危害被人们所熟知,而CO2是主要的温室气体之一,因此CO2减排是控制温室效应的关键。化石燃料燃烧是CO2排放主要途径,通过CO2收集和储存(CCS)技术可有效减少CO2排放,但操作繁杂、费用高,且消耗大量能量[1-2]。化学链燃烧技术(chemical-looping combustion,CLC)是一种新型的能源利用形式,其概念由德国科学家Richter在1983年首次提出[3]。通过载氧体吸收空气中的氧气转化为载氧体内部的晶格氧,在高温条件下,燃料与载氧体内的晶格氧或载氧体高温分解的O2反应放出热量,燃烧过程中金属氧化物(Me/MeO)载氧体在燃料反应器中被燃料(合成气或天然气)还原成Me及在空气反应器中被空气氧化成MeO,还原和氧化交替进行,避免了燃烧过程中燃料和空气的直接接触,因无空气中N2参与,CO2分离储存,减少了燃料型NOx的生成[4],且通过载氧体的梯级还原实现了燃料的梯级利用[5],因此CLC具有CO2内分离、能量利用率高、能量消耗和NOx排放低等优点。固体燃料(如煤)的CLC中固体燃料和氧载体之间的固固反应非常缓慢,固体燃料气化后才能与载氧体充分反应,因而在CLC中固体燃料的气化是速率限制环节,导致化学链燃烧中固体燃料的燃烧效率和燃烧后CO2捕集效率较低[6]。Mattisson等[7]提出了氧解耦化学链燃烧(chemical-looping oxygen uncoupled,CLOU)技术的概念,燃料反应器中使用的特定载氧体在高温和缺氧环境条件下能够分解释放气态O2,与反应器中的固体燃料在无需气化的情况下发生气固反应,极大提高了化学链燃烧效率。然而CLOU中使用的载氧体种类有限,主要有CuO/Cu2O、Co3O4/CoO和Mn2O3/Mn3O4,其中CuO/Cu2O载氧体在高温下容易烧结,Co3O4/CoO载氧体成本较高,Mn2O3/Mn3O4载氧体活性较差不能完全满足当前化学链燃烧的要求。CLC和CLOU使用的固态载氧体的优点是能够精细化控制载氧体材料的特性,但容易磨损、结块和烧结,特别是高温条件下容易缩短载氧体颗粒的工作寿命[8]。同时操作温度和压力也受到限制,导致与燃烧和气化过程有关的能效降低。液体化学链气化(LCLG)和液体化学链燃烧(LCLC)分别是2种近期提出的从烃燃料燃烧中生产合成气和收集CO2的技术[9-11],通过使用液体载氧体进行化学链燃烧或气化解决了固体载氧体磨损和烧结的问题,极大提高反应物接触效率,提高燃料转化率。Zhang等[12]研究了气态载氧体MoO3在化学链燃烧和气化系统的可行性,研究发现气态载氧体可用于化学链燃烧和气化系统,提出MoO3气态载氧体具有实现高反应速率、100%载氧体还原率和无限载氧体寿命的潜力。化学链燃烧技术经过了普通载氧体的晶格氧与燃料的燃烧、载氧体高温分解的分子氧与燃料的燃烧以及液态、固态载氧体,化学链燃烧技术因载氧体物化特性的改善而得到优化,因此载氧体特性对于化学链燃烧系统的运行至关重要。载氧体研发与选择是化学链燃烧系统发展和高效稳定运行的关键,本文以化学链燃烧中的载氧体物化特性为核心,从载氧体的制备、组成以及掺杂优化等方面进行论述,以求在客观认识载氧体发展现状的情况下,寻求未来化学链燃烧技术的发展方向以及解决载氧体存在问题的具体方法。

1 载氧体特性

近几年超过900种载氧体被检测,从来源看主要包括人工合成载氧体、廉价天然矿石[13-17]和废渣类[18-19]3种载氧体;从类型来看主要包括金属载氧体和非金属载氧体。对载氧体组分和结构的改造主要是通过调节制备方法,惰性载体和活性成分的种类、含量以及改性元素的掺杂来实现对载氧体活性和稳定性的控制。

1.1 制备方法

载氧体常用的制备方法有机械混合法、浸渍法、冷冻成粒法、化学共沉淀法以及溶胶凝胶法等,不同方法制备出的载氧体特性有所差异,具体见表1。

由表1可知,载氧体制备方法中浸渍法和化学共沉淀法应用较广泛,其制备成本低,样品均匀性好、操作易于控制;机械混合法制备过程简单,成本低,但样品组分间均匀性差;溶胶凝胶法和冷冻成粒法制备过程复杂,成本较高,可得到高均匀性、高比表面积的载氧体,但由于其成本较高目前只适合实验室操作,不利于大规模生产。除传统制备方法外,覃吴等[20]基于理论分析制备了高弥勒指数晶面的Fe2O3(104)/Al2O3载氧体,其具有发达的表面多孔结构和较大的比表面积,CO化学链燃烧的载氧体特性比传统浸渍法制备的载氧体Fe2O3/Al2O3具有更高的反应活性。赵铁鹏等[26]通过聚苯乙烯(PS)胶晶模板法合成了三维有序大孔(3DOM)α-Fe2O3载氧体,3DOM Fe2O3呈现排列规整的三维有序多孔形貌,层与层间通过三维孔道相连,并交替排列[27],其发达的孔隙提高了载氧体比表面积和载氧体在化学链燃烧中的反应性[28]

表1 载氧体制备方法及特点
Table 1 Preparation methods and characteristics of oxygen carriers

方法机理过程特点机械混合法将载氧体组分粉末分散于溶液中,转到球磨机机械性研磨混合制样操作简单,易于控制,目标产物产率高,但是制备的样品组分间均匀性难以保证,制得的载氧体反应活性较低,容易团聚[21-22]浸渍法将含有活性组分的前驱体溶液浸渍到固体惰性载体上,达到均匀混合制备载氧体的目的制备过程简单,混合均匀性好,组分便于控制,可通过控制浸渍前驱体溶液的量来控制载氧体组分含量溶胶凝胶法载氧体组分化合物经过溶液、溶胶、凝胶而固化,再经低温热处理制备出分子乃至纳米亚结构的载氧体材料制备的样品具有均匀性好、微观结构可控、化学计量准确[23]、比表面积高[24]等优点;但原料价格昂贵,有些原料为有机物,危害健康,操作周期长化学共沉淀法在溶液状态下将不同化学成分的物质混合,在混合液中加入适当沉淀剂制备前驱体沉淀物,再将沉淀物干燥或锻烧,制得相应的载氧体粉体颗粒工艺简单、成本低、易于得到组分均一,硬且致密的纳米粉体载氧体材料,但制备过程中沉淀剂的加入可能会使局部浓度过高,产生团聚或组成不均匀冷冻成粒法载氧体各成分的前驱体混合饱和溶液喷入盛有液氮的杜瓦瓶中不断搅拌,形成颗粒状产物,低温干燥抽真空制备粉状载氧体材料制备过程繁杂,且需要液氮,成本较高,但制备的载氧体在化学链燃烧中的活性和稳定性较高[25]

1.2 惰性载体

载氧体通常由活性成分和惰性成分组成,单独的金属氧化物的反应性及稳定性较差,容易烧结和破碎,如NiO被还原后其氧化反应只在颗粒表面进行,氧化率很低[29];CuO和Cu的熔点较低,在高温条件下易于烧结使得载氧体的孔隙率骤减,与反应气体的接触面积降低,导致载氧体反应性下降。为提高载氧体特性,可在载氧体活性组分中掺杂一些稳定性较高的惰性载体,惰性载体使活性组分具有良好的分散性,提高载氧体颗粒载热能力的同时,增加了载氧体的孔隙率和机械强度,有利于提高载氧体活性和循环稳定性[30]。宋涛等[31]研究了以赤铁矿作为载氧体、以H2作为燃料的化学链燃烧反应,研究表明载氧体中惰性载体SiO2、Al2O3的存在可以阻止铁矿石载氧体颗粒表面活性相Fe2O3晶粒在高温下的液相接触,从而有效抑制载氧体的烧结,从微观角度揭示了添加惰性载体后铁基载氧体稳定性提高的内部机理。秦翠娟等[32]以CaSO4为载氧体研究了煤的化学链燃烧反应,结果表明以纯CaSO4单独成分作为载氧体时,其在化学链燃烧过程中活性和机械强度都相对较差。周树理[33]向纯CaSO4载氧体中添加惰性载体探究其对载氧体的影响,研究表明惰性载体的存在不仅能提高CaSO4载氧体在化学链燃烧中的反应速率和机械强度,还能够降低反应温度。同一种活性成分,惰性成分不同得到的载氧体特性不同,Andy等[34]研究发现,NiO/ZrO2、NiO/Al2O3和NiO/NiAl2O4在低温650 ℃条件下仍具有较高的反应性,而NiO/SiO2和NiO/TiO2表现出低起始反应活性,且不到2 h就快速失活。Adánez等[35]制备了不同载体ZrO2和MgAl2O4的铜基载氧体,研究其在CLOU中的反应特性,研究表明为达到较好的反应性和稳定性,相对于CuO/MgAl2O,CuO/ZrO2中需掺入更多的惰性载体ZrO2

近几年有序介孔材料也被用作惰性材料制备载氧体。有序介孔材料发达的孔隙结构和比表面积能提供大量活性位,具有负载金属颗粒的能力,在载氧体中广泛使用[36-38],如介孔二氧化硅家族中的MCM-41和SBA-15、SBA-16等。

1.3 活性组分

载氧体主要包括金属氧化物和非金属氧化物,化学链燃烧系统中的载氧体要具有良好的反应性和稳定性,且材料易得,制备成本低,对环境友好。目前常用的载氧体有由Fe、Cu、Ni、Mn等过渡金属氧化物制备的金属载氧体和碱土金属(如Ca、Ba、Sr硫酸盐)制备的非金属载氧体[39-40]。载氧体活性成分不同,载氧体性质有所差异,具体见表2。

表2 传统载氧体的种类和特性
Table 2 Types and characteristics of traditional oxygen carriers

载氧体类别载氧体代表特性铜基载氧体CuO/Al2O3、CuO/SiO4、CuO/TiO2等反应活性强,价格适中,积碳较弱,对环境友好,具有CLOU特性,但其熔点低,高温下载氧体容易团聚烧结[41]镍基载氧体NiO/Al2O3、NiO/SiO4、NiO/TiO2等载氧量大,比Cu、Co、Mn和Fe基载氧体表现出更高的反应活性[42],能在高温下运行,但价格昂贵,容易积碳[43],机械稳定性差,对环境有害[44]铁基载氧体Fe2O3/Al2O3、Fe2O3/SiO4、Fe2O3/TiO2等总体反应性能稍差[45],载氧能力较低,但具有环境友好、价格低廉、热化学稳定性好、不易积碳[46]等优点Co基载氧体Co2O3/Al2O3、Co2O3/SiO4、Co2O3/TiO2等反应活性高,氧传递能力强,但价格昂贵Mn基载氧体Mn3O4/Al2O3、Mn3O4/SiO2、Mn3O4/TiO2等具有较好的反应性,氧传递能力强,但热稳定性差,污染环境[47]非金属载氧体CaSO4、BaSO4等载氧量高,原材料丰富易得,价格低,环境友好,不存在重金属二次污染[48],但不稳定,反应活性低,易烧结,反应过程中会生成含硫气体,如H2S、SO2和COS等[49]

由表2可知,铜基载氧体易于烧结;镍基载氧体对环境有害;铁基载氧体活性一般,载氧能力差;锰基载氧体热稳定性差,污染环境;非金属载氧体不稳定、活性低、易烧结。近期研究主要是基于传统载氧体,通过掺杂改性传统载氧体,进而改善载氧体化学链燃烧特性。

1.4 掺杂改性

一些金属元素的掺杂不仅可提高载氧体的反应性,降低反应温度[50],还可抑制载氧体积碳[51],提高反应产物的选择性[52],从而改善载氧体的活性和循环特性。程煜等[53]制备了掺杂K2CO3的Fe2O3/Al2O3载氧体,探究K元素掺杂对煤焦化学链气化中铁基载氧体特性的影响,研究发现载氧体引入K2CO3能够提高载氧体活性和循环特性。也有部分学者以低活性的铁矿石作为铁基载氧体,并掺杂K2CO3、Na2CO3、Li2CO3等。K2CO3含量达到6%时载氧体活性最高,高于或低于此值活性均降低;向纯铁矿掺入6%的Na2CO3,960 ℃时煤化学链的催化燃烧效果最显著,碳转化率高达92.7%,高于纯铁矿石约15.5%;掺杂元素不同提升效果有所差异,K元素掺杂优于Na和Li元素[54-56]。Ryua等[57]制备了掺杂CeO2的铁基载氧体,研究Ce掺杂对化学链燃烧中载氧体特性的影响,研究发现Fe2O3中加入少量CeO2可降低Fe2O3与H2反应的活化能,从而提高载氧体的反应性。对于非金属载氧体CaSO4的掺杂改性也有较多研究,在CaSO4载氧体掺入活性添加剂NiO、CuO、Fe2O3等可有效改善载氧体的反应性,掺入惰性添加剂Al2O3和SiO2等可提高CaSO4载氧体的稳定性,掺入固硫剂CaO可有效抑制化学链燃烧副反应的发生[58-60]。赤铁矿的加入可有效提高钙基载氧体的碳转化率和CO2收集效率,赤铁矿添加量达到7%时,2种效率趋于稳定,分别达到90%和91%,高于无赤铁矿添加的79%和88%,含硫气体的释放也得到了抑制。在CaSO4载氧体中掺杂CaO,物质的量比为1.99,900 ℃时含硫气体SO2和H2S的释放相对于无CaO掺入有较大幅度降低,分别为70.06%和50.09%,但气体硫化物的释放仍较显著;在钙基载氧体中添加CuO能提高载氧体的反应活性,CO2体积分数以及煤的燃烧效率均提高,CaSO4和CuO质量比为10∶1.5时复合载氧体的活性最高,在850 ℃时碳转化率达到91.2%,且10次循环反应中具有较好的反应性能。文圆圆等[61]通过浸渍法制备的CuO/Al2O3载氧体颗粒在化学链燃烧中,铜基载氧体烧结严重,添加CoO、NiO、MgO和SrO2四种氧化物制成复合载氧体后,由于高熔点的新成分有效分散在CuO晶粒之间形成晶粒和原子迁移阻力抑制了烧结,从而有效改善铜基载氧体的循环稳定性,但Cu-Sr复合载氧体中的Sr会与CO2化合生成碳酸锶,并在吸氧阶段释放出CO2,故Cu-Sr复合载氧体具有碳酸化的缺陷,会降低CO2捕集效率。

由上所知,载氧体中适宜掺杂可有效提高载氧体的化学链燃烧特性,但以化学纯试剂作为添加剂,成本较高,不利于大规模的工业化应用,因此有学者尝试选用廉价的富含碱金属和碱土金属的物质来修饰载氧体。沈来宏等[62]、张帅等[63]研究发现草木灰的掺入能有效提高Fe基载氧体的反应活性和循环特性,草木灰修饰反应后铁基载氧体的孔隙结构较为明显,高K/Si比能防止铁基载氧体的严重烧结,载氧体中负载的K在循环中流失,载氧体稳定性降低。高正平等[64]将草木灰掺入铁矿石载氧体,发现草木灰生物质修饰的铁矿石K的负载情况较为稳定,流失现象得到抑制。Saha[65]用秸秆混以煤作为化学链燃烧的燃料,分析以CaSO4为载氧体在化学链燃烧过程中特性,研究表明掺入较高比例的秸秆有利于提高化学链燃烧效率和载氧体还原后的氧化再生速率。杨明明等[27]将凹凸棒石黏土(ATP)加入铁基载氧体中以改善其特性,研究表明ATP黏土的掺入能明显改善铁基载氧体的结构特征,显著增加其比表面积和抗磨损性能。李媛等[66]向CuO/TiO2中加入分散剂分析其对载氧体性能的影响,研究表明添加分散剂能有效抑制高温条件下燃料不完全燃烧产生的芳香烃环化去氢积碳效应,有利于抑制载氧体的碳沉积。

2 结 语

传统的载氧体制备方法中机械混合法、浸渍法操作简单、成本低,但制备的载氧体样品均匀性差,活性和稳定性难以保证;化学共沉淀、冷冻成粒法和溶胶凝胶法能在一定程度上提高载氧体各成分的均匀性,但其载氧体的微观结构难以控制,操作复杂,制备成本较高,不适于大规模应用,因此载氧体制备方法在低成本、高效以及精细化控制方面的优化研究仍是载氧体进一步发展的关键。目前常用的载氧体中铁基载氧体活性低,镍基和锰基载氧体对环境不利,而铜基载氧体易于烧结,惰性载体的加入和碱金属等元素的掺杂能在一定程度上改善其特性,但距离低成本、高活性、环境友好、工作寿命长还有一定差距。载氧体的掺杂能改善载氧体的化学链燃烧特性,而载氧体组分和掺杂组分之间的协同机理是载氧体掺杂优化的关键,是下一步的研究重点。

参考文献(References):

[1] LIU H W,GALLAGHER K S.Preparing to ramp up large scale CCS demonstrations:An engineering-economic assessment of CO2 pipeline transportation in China[J].International Journal of Greenhouse Gas Contro,2011,5(4):798-804.

[2] HE F,LI H B,ZHAO Z L.Advancements in development of chemical-looping combustion:A review[J].International Journal of Chemical Engineering,2014,2009:1-16.

[3] RICHTER H J,KNOCHE K F.Reversibility of combustion processes[J].Efficiency and Costing,1983,235(1):71-85.

[4] 金红光.新颖化学链燃烧与空气湿化燃气轮机循环[J].工程热物理学报,2000,21(2):138-141.

JIN Hongguang.Novel chemical chain combustion and air humidification gas turbine cycle[J].Journal of Engineering Thermophysics,2000,21(2):138-141.

[5] 金红光,洪慧,韩涛.化学链燃烧的能源环境系统研究进展[J].科学通报,2008,53(24):2994-3005.

JIN Hongguang,HONG Hui,HAN Tao.Research progress of energy environmental systems for chemical chain combustion[J].Chinese Science Bulletin,2008,53(24):2994-3005.

[6] ADANE J,ABAD A,GARCIA-LABIANO F,et al.Progress in chemical-looping combustion and reforming technologies[J].Progress in Energy & Combustion Science,2012,38(2):215-282.

[7] MATTISSON T,LYNGFELT A,LEION H.Chemical-looping with oxygen uncoupling for combustion of solid fuels[J].International Journal of Greenhouse Gas Control,2009,3(1):11-19.

[8] KENARSARI S D,YANG D L,JIANG G D,et al.Review of recent advances in carbon dioxide separation and capture[J].RSC Advances,2013,3(45):22739-22773.

[9] WANG K,YU Q B,QIN Q,et al.Thermodynamic analysis of syngas generation from biomass using chemical looping gasification method[J].International Journal of Hydrogen Energy,2016,41(24):10346-10353.

[10] GNANAPRAGASAM N,REDDY B V,ROSEN M A.Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems:Assessment of system operation and resource requirements[J].International Journal of Hydrogen Energy,2009,34(6):2606-2615.

[11] HUANG Z,ZHANG Y,FU J J,et al.Chemical looping gasification of biomass char using iron ore as an oxygen carrier[J].International Journal of Hydrogen Energy,2016,41(40):17871-17883.

[12] ZHANG Q,RAKHSHI A,DASGUPTA D,et al.Gaseous state oxygen carrier for coal chemical looping process[J].Fuel,2017,202:395-404.

[13] MEI D F,MENDIARA T,ABAD A,et al.Manganese minerals as oxygen carriers for chemical looping combustion of coal[J].Industrial & Engineering Chemistry Research,2016,55(22):6539-6546.

[14] TIAN X,WANG K,ZHAO H B,et al.Chemical looping with oxygen uncoupling of high-sulfur coal using copper ore as oxygen carrier[J].Proceedings of the Combustion Institute,2017,36(3):3381-3388.

[15] HAIDER S K,AZIMI G,DUAN L,et al.Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation[J].Applied Energy,2016,163:41-50.

[16] LIU L,LIU Q C,CAO Y,et al.Investigation of sintered iron ore fines as an oxygen carrier in chemical looping combustion[J].Journal of Thermal Analysis & Calorimetry,2016,125 (1):459-469.

[17] MATTISSON T,LINDERHOLM C,JERNDAL E,et al.Enhanced performance of manganese ore as oxygen carrier for chemical-looping with oxygen uncouping(CLOU) by combination with Ca(OH)2 through spray-drying[J].Journal of Environmental Chemical Engineering,2016,4(4):3707-3717.

[18] BAO J,CHEN LY,LIU F,et al.Evaluating the effect of inert supports and alkali sodium on the performance of red mud oxygen carrier in chemical looping combustion[J].Industrial & Engineering Chemistry Research,2016,55(29):8046-8057.

[19] GAO Z F,WU Z J,LIU W M.Preparation and chemical looping combustion properties of Fe2O3/Al2O3 derived from metallurgy iron-bearing dust[J].Journal of Environmental Chemical Engineering,2016,4(2):1653-1663.

[20] 覃吴,林常枫,程伟良,等.表面形貌控制增强铁基载氧体与褐煤化学链燃烧反应活性[J].高等学校化学学报,2015,36(1):116-123.

QIN Wu,LIN Changfeng,CHENG Weiliang,et al.Surface morphology control enhances the combustion reaction activity of iron-based oxygen carriers and lignite chemical chains[J].Chemical Journal of Chinese Universities,2015,36(1):116-123.

[21] DEDIEGO L F,GAYN P,GARCA-LABIANO F,et al.Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion:Avoiding fluidized bed agglomeration[J].Energy Fuels,2005,19(5):1850-1856.

[22] 王京,杨士建,顾翀,等.过渡金属元素掺杂硫酸钙氧载体的还原性能[J].高校化学工程学报,2012,26(4):606-611.

WANG Jing,YANG Shijian,GU Chong,et al.Reduction of transition metal elements doped with calcium sulfate oxygen carriers[J].Chemical Engineering Journal of Chinese Universities,2012,26(4):606-611.

[23] 王首都,王伟,祝捷,等.溶胶凝胶法铁基载氧体的制备与反应性能研究[J].安徽农业科学,2012,40(34):16748-16750.

WANG Shoudu,WANG Wei,ZHU Jie,et al.Preparation and reaction performance of iron-based oxygen carrier prepared by sol-gel method[J].Journal of Anhui Agricultural Sciences,2012,40(34):16748-16750.

[24] 杨明明,刘永卓,贾伟华,等.Fe2O3/ ATP载氧体制备及煤化学链燃烧性能研究[J].燃料化学学报,2015,43(2):167-176.

YANG Mingming,LIU Yongzhuo,JIA Weihua,et al.Preparation of Fe2O3/ ATP oxygen carrier and study on combustion performance of coal chemical chain[J].Journal of Fuel Chemistry and Technology,2015,43(2):167-176.

[25] 郭磊,赵海波,马琎晨,等.批量制备Fe2O3/Al2O3氧载体及褐煤化学链燃烧实验研究[J].中国电机工程学报,2013,33(17):57-63.

GUO Lei,ZHAO Haibo,MA Chenchen,et al.Batch preparation of Fe2O3/Al2O3 oxygen carrier and lignite chemical chain combustion experiment[J].Proceedings of the CSEE,2013,33(17):57-63.

[26] 赵铁鹏,高德淑,雷钢铁,等.三维有序大孔α-Fe2O3的制备及电化学性能研究[J].化学学报,2009,67(17):1957-1961.

ZHAO Tiepeng,GAO Deshu,LEI Gangtie,et al.Preparation and electrochemical properties of three-dimensionally ordered macroporous α-Fe2O3[J].Chinese Journal of Chemical Chemistry,2009,67(17):1957-1961.

[27] SADAKANE M,ASANUMA T,KUBO J,et al.Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method[J].Chemistry of Materials,2005,17(13):3546-3551.

[28] 孙茹,李东林,陈光琦,等.三维有序大孔Fe2SiO4/SiO2@C锂离子电池负极纳米玻璃陶瓷-碳复合材料制备及电化学性能[J].无机化学学报,2017,33(3):471-478.

SUN Ru,LI Donglin,CHEN Guangqi,et al.Preparation and electrochemical performance of nano-glass-ceramic-carbon composite cathode materials for three-dimensionally ordered macroporous Fe2SiO4/SiO2@C lithium-ion batteries[J].Chinese Journal of Inorganic Chemistry,2017,33(3):471-478.

[29] JIN H G,ISHIDAB M.Reactivity Study on a novel hydrogen fueled chemical-looping combustion[J].International Journal of Hydrogen Energy,2001,26(8):889-894.

[30] LI Y P,GONG J,et al.Carbon deposition and sintering characteristics on iron-based oxygen carriers in the catalytic cracking process of coal tar[J].Energy Fuel,2017,31(6):6501-6506.

[31] 宋涛,沈来宏,肖军,等.铁矿石载氧体化学链燃烧高温还原表征[J].燃料化学学报,2011,39(8):569-574.

SONG Tao,SHEN Laihong,XIAO Jun,et al.Characterization of high temperature reduction of iron ore carrier oxygen by chemical chain combustion[J].Journal of Fuel Chemistry and Technology,2011,39(8):569-574.

[32] 秦翠娟,沈来宏,郑敏,等.基于CaSO4载氧体的煤化学链燃烧还原反应实验研究[J].中国电机工程学报,2009,29(17):43-50.

QIN Cuijuan,SHEN Laihong,ZHENG Min,et al.Experimental study on combustion reduction of coal chemical chains based on CaSO4 oxygen carriers[J].Proceedings of the CSEE,2009,29(17):43-50.

[33] 周树理.非混合燃烧中CaSO4载氧体的研究[D].北京:中国科学院研究生院,2007.

[34] ANDY A,ELENI H,LISHI S,et al.Activity study of NiO-based oxygen carriers in chemical looping steam methane reforming[J].Catalysis Today,2016,272:32-41.

[35] ADNEZ-RUBIO I,GAYN P,GARCA-LABIANO F,et al.Development of CuO-based oxygen-carrier materials suitable for chemical-looping with oxygen uncoupling (CLOU) process[J].Energy Procedia,2011,4(1):417-424.

[36] ANA G G,WU Z T,DAVID C,et al.Ni/SBA-15 catalysts for combined steam methane reforming and water gas shift-prepared for use in catalytic membrane reactors[J].Applied Catalysis A General,2015,506:188-196.

[37] EMMA L,JIANG Y J,JASON S,et al.CO2 reforming of methane over MCM-41-supported nickel catalysts:Altering support acidity by one-pot synthesis at room temperature[J].Applied Catalysis A General,2014,473:51-58.

[38] MESHKSAR M,DANESHMAND-JAHROMI S,RAHIMPOUR M R.Synthesis and characterization of cerium promoted Ni/SBA-16 oxygen carrier in cyclic chemical looping steam methane reforming[J].Journal of the Taiwan Institute of Chemical Engineers,2017,76:73-78.

[39] 刘黎明,赵海波,郑楚光.化学链燃烧方式中氧载体的研究进展[J].煤炭转化,2006,29(3):83-93.

LIU Liming,ZHAO Haibo,ZHENG Chuguang.Research progress of oxygen carriers in chemical chain combustion[J].Coal Conversion,2006,29(3):83-93.

[40] 丁宁,郑瑛,罗聪,等.助剂对CaSO4载氧体化学链燃烧的影响[J].中国电机工程学报,2011,31(5):40-47.

DING Ning,ZHENG Ying,LUO Cong,et al.Effect of additives on chemical chain combustion of CaSO4 oxygen carrier[J].Proceeding of the CSEE,2011,31(5):40-47.

[41] GAO N N,WANG J X,SHAO L,et al.Removal of carbon dioxide by absorption in microporous tube-in-tube microchannel reactor[J].Industrial & Engineering Chemistry Research,2011,50(10):6369-6374.

[42] ZAFER Q,MATTISSON T,GEVERT B.Redox investigation of some oxides of transition-state metals Ni,Cu,Fe,and Mn supported on SiO2 and MgAl2O4[J].Energy & Fuels,2006,20(1):34-44.

[43] 张号,金晶,刘帅,等.小型流化床实验台上镍基载氧体的积炭特性[J].化工进展,2013,32(1):104-107,113.

ZHANG Hao,JIN Jing,LIU Shuai,et al.Charcoal characteristics of nickel-based oxygen carriers on small fluidized bed test benches[J].Chemical Industry and Engineering Progree,2013,32(1):104-107,113.

[44] GAYN P,DIEGO L F D,GARCA-LABIANO F,et al.Effect of support on reacativity and selectivity of Ni-based oxygen carriers for chemical-looping combustion[J].Fuel,2008,87(12):2641-2650.

[45] WANG B W,ZHAO H B,ZHENG Y,et al.Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers[J].Fuel Processing Technology,2012,96:104-115.

[46] TERESA M,JOAKIM MYUNG J,RUBÉN U,et al.Evaluation of different oxygen carriers for biomass tar reforming (Ⅱ):Carbon deposition in experiments with methane and other gases[J].Fuel,2011,90(4):1370-1382.

[47] ARJMAND M,LEION H,MATTISSON T,et al.Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels[J].Applied Energy,2014,113(1):1883-1894.

[48] 沈来宏,肖军,肖睿,等.基于CaSO4载氧体的煤化学链燃烧分离CO2研究[J].中国电机工程学报,2007,27(2):69-74.

SHEN Laihong,XIAO Jun,XIAO Rui,et al.Separation of CO2 from coal chemical chain combustion based on CaSO4 oxygen carriers[J].Proceedings of the CSEE,2007,27(2):69-74.

[49] ZHENG M,SHEN L H,XIAO J.Reduction of CaSO4 oxygen carrier with coal in chemical-looping combustion:Effects of temperature and gasification intermediate[J].International Journal of Greenhouse Gas Control,2010,4(5):716-728.

[50] HUANG W C,KUO Y L,SU Y M,et al.A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion[J].Chemical Engineering Journal,2017,316:15-23.

[51] LI Y P,GONG J,HUANG F,et al.Carbon deposition and sintering characteristics on iron-based oxygen carrier in the catalytic cracking process of coal tar[J].Energy Fuel,2017,31(6):6501-6506.

[52] 张军伟,黄戒介,方倚天,等.铈修饰铁基复合载氧体用于化学链甲烷部分氧化重整制合成气研究[J].燃料化学学报,2014,42(2):158-165.

ZHANG Junwei,HUANG Jiejie,FANG Yitian,et al.Study on yttrium modified iron-based composite oxygen carrier for the partial oxidation of chemical chain methane to reforming synthesis gas[J].Journal of Fuel Chemistry and Technology,2014,42(2):158-165.

[53] 程煜,刘永卓,田红景,等.铁基复合载氧体煤化学链气化反应特性及机理[J].化工学报,2013,64(7):2587-2595.

CHENG Yu,LIU Yongzhuo,TIAN Hongjing,et al.Gasification characteristics and mechanism of chemical chain gasification of iron-based composite oxygen-carrying coal[J].CIESC Journal,2013,64(7):2587-2595.

[54] GU H M,SHEN L H,XIAO J,et al.Iron ore as oxygen carrier improved with potassium for chemical looping combustion of anthracite coal[J].Combustion and Flame,2012,159(7):2480-2490.

[55] 张思文,沈来宏,肖军,等.基于碱金属和过渡金属修饰铁矿石载氧体的煤催化燃烧[J].燃料化学学报,2012,40(10):1179-1187.

ZHANG Siwen,SHEN Laihong,XIAO Jun,et al.Catalytic combustion of iron ore based on iron ore modified with alkali metals and transition metals[J].Journal of Fuel Chemistry and Technology,2012,40(10):1179-1187.

[56] YU Z L,LI C Y,FANG Y T,et al.Reduction rate enhancements for coal direct chemical looping combustion with an iron oxide oxygen carrier[J].Energy & Fuels,2012,26(4):2505-2511.

[57] RYUA J C,LEEA D H,KANGB K S,et al.Effect of additives on redox behavior of iron oxide for chemical hydrogen storage[J].Industrial and Engineering Chemistry,2008,14(2):252-260.

[58] SONG T,ZHENG M,SHEN L H,et al.Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3 oxygen carrier in chemical-looping combustion of coal[J].Industrial & Engineering Chemistry Research,2013,52(11):4059-4071.

[59] 郑敏,沈来宏,冯晓琼.CaO加入条件下煤与CaSO4氧载体化学链燃烧的反应性能研究[J].燃料化学学报,2014,42(4):399-407.

ZHENG Min,SHEN Laihong,FENG Xiaoqiong.Reaction performance of coal and CaSO4 oxygen carrier chemical chain combustion under CaO addition condition[J].Journal of Fuel Chemistry and Technology,2014,42(4):399-407.

[60] 杨琴琴,张云鹏,刘永卓,等.CaSO4-CuO-Ben 载氧体煤化学链燃烧反应特性[J].中国粉体技术,2017,23(1):36-41.

YANG Qinqin,ZHANG Yunpeng,LIU Yongzhuo,et al.Combustion reaction characteristics of CaSO4-CuO-Ben oxygen-bearing coal chemical chains[J].China Powder Science and Technology,2017,23(1):36-41.

[61] 文圆圆,李振山,蔡宁生.铜基载氧体循环吸氧/释氧稳定性实验研究[J].工程热物理学报,2012,33(10):1798-1802.

WEN Yuanyuan,LI Zhenshan,CAI Ningsheng.Experimental study on the circulating oxygen oxygen/oxygen release stability of copper based oxygen bodies[J].Journal of Engineering Thermophysics,2012,33(10):1798-1802.

[62] 沈来宏,周玉飞,顾海明,等.基于草木灰修饰Fe基载氧体的化学链燃烧实验[J].热化学与技术,2015,14(4):305-313.

SHEN Laihong,ZHOU Yufei,GU Haiming,et al.Chemical chain combustion experiment based on the modification of Fe-based oxygen carriers by plant-wood ash[J].Thermochemistry and Technology,2015,14(4):305-313.

[63] 张帅,肖睿,杨宏伟,等.黄豆秸秆灰改性铁矿石载氧体的燃煤化学链燃烧反应特性研究[J].中国电机工程学报,2017,37(8):2304-2310.

ZHANG Shuai,XIAO Rui,YANG Hongwei,et al.Study on combustion characteristics of coal-fired chemical chains modified by soybean straw ash modified iron ore[J].Proceedings of the CSEE,2017,37(8):2304-2310.

[64] 高正平,黄启龙,顾海明,等.基于草木灰修饰铁矿石的串行流化床化学链燃烧[J].热科学与技术,2016,15(5):397-405.

GAO Zhengping,HUANG Qilong,GU Haiming,et al.Sequential fluidized bed chemical chain combustion based on plant-wood-modified iron ore[J].Thermal Science and Technology,2016,15(5):397-405.

[65] SAHA C.Chemical looping combustion of victorian brown coal Using NiO oxygen carrier[J].International Journal of Hydrogen Energy,2011,36(4):3253-3259.

[66] 李媛,尹雪峰,张志磊.负钛铜基载氧体在煤化学链燃烧中多环芳烃的生成[J].浙江大学学报(工学版),2016,50(2):360-368.

LI Yuan,YIN Xuefeng,ZHANG Zhilei.Formation of polycyclic aromatic hydrocarbons in coal chemical chain combustion using negative Titanium-Cu carrier oxygen carriers[J].Journal of Zhejiang University(Engineering Science),2016,50(2):360-368.

洁净煤技术
《洁净煤技术》(双月刊)是由国家煤矿安全监察局主管、煤炭科学研究总院与煤炭工业洁净煤工程技术研究中心主办的科技期刊。
  • 861文章总数
  • 158384访问次数
  • 35篇 最新文章
  • 编辑部专区

    联系我们